Portfolio

General Software Development

  • Applications for Microsoft® Windows (C# / .Net, C++)
  • Automotive Software Components for Embedded Linux Systems according to SPICE and MISRA rules (C++)
  • Performance Optimization for .Net Applications using Task Parallel Library (TPL/.NET).
  • Performance Optimization for Script Languages (Python, Matlab, Scilab) using external C++ Libraries
  • Microsoft® Office Integration (VBA)

Data Science / Machine Learning / Artificial Intelligence

  • Defect Classification for Loudspeakers and Electric Window Motors
  • Feature Extraction (e.g. wavelet packet transformation)
  • Dimentionality Reduction and feature selection (e.g. PCA, Auto Encoders, Lasso)
  • Clustering (k-Means, Fuzzy c-Means, Gath-Geva, Expectation Maximization, Hierarchical)
  • Statistics and Visualisation (e.g. Matplotlib, Seaborn, Spectrogram, Scaleogram, Waterfall Plot, t-SNE)
  • Classification (Logistic Regression, SVM, Random Forest, Decision Trees, Boosted Trees)
  • Parallel Computing using PySpark
  • Deep Learning (NN, CNN, RNN/LSTM, Auto Encoders) with TensorFlow und Keras

Customizations for the Klippel Measurement System

  • Processing of Klippel Databases (kdb, Klippel Automation)
  • Remote Control the Klippel QC System (IO-Monitor)
  • New Features for the Klippel QC Scripts (Scilab)

 

 

Published on